
1

Thread Library
© 1994-1995 Ari Halberstadt.

1

2
Contents
Introduction...5
Description...5
Contents of this Distribution..6
Using Thread Library...8

Minimal Use..8
Linking..10
Segmentation..10
Thread Serial Numbers..10
Time..10
Concurrency...10
Context...11
Detecting Errors...11
Handling Errors with Exceptions...11
Debugging..13
Profiling..13

Thread Library Manager..14
Using Thread Library Manager..15
Differences From Thread Manager..15

Predicates...16
Notation..16
Definitions..17

Functional Interface...18
Error Handling...18
Thread Creation and Destruction...19
Scheduling..24
Accessing the Queue of Threads...28
Information About the Stack...29
Application Defined Data..31
Accessing Application Defined Memory Allocation Functions..................31
Accessing Application Defined Protocol Functions...................................33

Application Defined Protocol Functions...35
Call Sequence of Protocol Functions..35
Main Thread...36
Environment When Protocol Functions are Called...................................37
Functional Interface of Protocol Functions..37

Memory Allocation...39
Allocation Algorithm...39

Application Defined Memory Allocation Functions..40
Functional Interface to Allocation Functions..40

2

3
Apple's Thread Manager..41
Known and Potential Problems...42

Handling Events...43
Virtual Memory...43
Thread Manager...43
Toolbox...43
SuperClock...43
Future Operating Systems..44

To Do..44
Credits..44
Bibliography...45

3

4
Introduction

Multitasking operating systems allow multiple tasks, or processes, to execute—seemingly
concurrently—on a single processor. However, the overhead necessary to maintain a full
process, both in space and in time, can make using multiple processes fairly expensive.
Threads are lightweight versions of processes. Threads inhabit a common address space
and share common global data within a single application. This allows threads to consume
fewer resources than a full-fledged process might consume, and makes switching between
threads significantly faster than switching between processes.
A typical Macintosh application might use threads to allow the user to continue to work in
an application while the same application is simultaneously performing some lengthy
operation. For instance, an application like the Finder might create a new thread every
time the user copies files. The copy would execute concurrently while the user continues to
use the Finder to perform further copy operations, or to do any other task within the
Finder. As another example, a word processing application might create a thread when a
user asks it to check the spelling of a long document. While the word processor is locating
all misspelled words, the user could continue to edit other documents.
Such capabilities are possible even without using threads. For instance, one could create a
task, with an associated entry point function, that is called on null events. The task would
execute some small chunk of work, save its current state, and return to its caller. The next
time a null event is received, the caller would call the task, which would restore its saved
state, perform another small chunk of work, etc. However, such alternative approaches can
be very cumbersome to implement. In a thread, the state of a task can be maintained on a
completely separate stack, and there is no need to unroll the function call stack in order to
allow the application to continue to execute. Thus, threads can lead to a much simpler style
of programming that supports simulated concurrency on a single processor machine1.

Description
Thread Library is a free library, for use by Macintosh software developers, that implements
cooperative multiple thread execution within a single application. Thread Library
• does not require any extensions;
• should work with all Macintosh models (from the Plus on up);
• works with system 7.x and with system 6.x under Finder or MultiFinder;
• runs in native mode on 680x0 and PowerPC based Macintoshes;
• compiles into a small library of 3 to 8 kilobytes;
• works with the Symantec, Metrowerks, and MPW compilers.

1Threads can also be used in multiprocessor computers, where they can be used to provide true
concurrency.

4

5
The 680x0 version of Thread Library is 2-3 times faster than Apple's Thread Manager. The
PowerPC version of Thread Library is about 2 times faster than Apple's Thread Manager.
Every thread has its own stack, and there are no restrictions on the objects that can be
allocated on a thread's stack. All other global application data are shared by threads.
Context switches are very efficient since they involve only a few operations to save the
current thread's state, followed by a context switch to the new thread, and a few
instructions to restore the new thread's state.
This distribution includes:
• complete source code in C;
• detailed documentation in Microsoft Word 5.0 format;
• prebuilt libraries for 68K and PowerPC programs, including debug versions of the
libraries;
• a new interface that mimics Apple's Thread Manager;
• a simple test application that demonstrates how threads may be used;
• an application that compares the speed of Thread Library with the speed of Apple's
Thread Manager;
• Metrowerks CodeWarrior project files;
• AppleScript program for automatic builds.

Contents of this Distribution
This distribution consists of several folders, containing documentation, demonstration
programs, and source code for Thread Library.
Documentation................................Contains files that provide documentation about Thread

Library.
..Distribution Documents the terms under which Thread

Library may be used and distributed.
..Thread Library Documentation This document.
..Version History Documents the changes made to

each version.
Executables.....................................Contains executable versions of the demonstration

applications.
Interfaces..Header files for Thread Library.
.. ThreadLibrary.h Declarations and definitions

for using Thread Library. You need to include this
header in any file that makes use of Thread Library.

.. ThreadLibraryManager.h Interface to Thread
Library that mimics Apple's Thread Manager.

.. ThreadLibraryStubs.h Macros that stub out
all of the calls to Thread Library with null statements or
expressions. You can use this header while debugging to
temporarily remove Thread Library from your
application.

5

6
Libraries...Compiled libraries for Thread Library.
..ThreadLibrary.68K.cwlib Compiled 68K CodeWarrior

library file for Thread Library. You need to link this
library with your application in order to use Thread
Library.

..ThreadLibrary.dbg.68K.cwlib Compiled 68K
CodeWarrior library file for Thread Library, with all
debug code enabled. You should use this library while
debugging your application.

..ThreadLibrary.PPC.cwlib Compiled PowerPC
CodeWarrior library. You need to link this library with
your application in order to use Thread Library.

..ThreadLibrary.dbg.PPC.cwlib Compiled PowerPC
CodeWarrior library, with all debug code enabled. You
should use this library while debugging your
application.

..ThreadLibrary.PPC.shlb Compiled PowerPC shared
library. You may link this library with your application in
order to use Thread Library.

..ThreadLibrary.dbg.PPC.shlbCompiled PowerPC shared
library, with all debug code enabled. You may use this
library while debugging your application.

Scripts...Contains Apple scripts that automate the process of
compiling Thread Library.

..BuildThreadLibrary.as Builds all of the
components of Thread Library and then removes the
object code.

..BuildLibrary.as Reusable Apple script functions
used to build the components of Thread Library.

Source... Source code and project files for Thread Library
and the demonstration applications.

..DemosSource code for the demonstration applications.

.. ThreadsTest Source code for the ThreadsTest
application, which is used for testing Thread Library.

.. ThreadsTimed Source code for the
ThreadsTimed application, which is used for comparing
the execution speed of Thread Library with the
execution speed of Thread Manager.

..Libraries Source code and project files for the
compiled libraries.

.. ThreadLibrary.c The actual implementation
of Thread Library.

.. ThreadLibraryManager.c Compatability layer
that mimics Apple's Thread Manager using Thread
Library.

6

7
.. ThreadLibraryPrefix.h Prefix file for

Metrowerks CodeWarrior project files.
.. regppc.s Assembly language routines for

the PowerPC version of Thread Library.

7

8

Using Thread Library
You should read this document before trying to use Thread Library in your application.
There are some important issues in using threads that you should be aware of, otherwise
your application may crash. For instance, exception handling and profiling may require
changes in order to work correctly with threads. If you are upgrading from a previous
version of Thread Library, you should read the sections in the file "Version History" for all
newer versions. This will alert you to any important changes to the interfaces to Thread
Library.
This document contains comments extracted from the source code that describe the
functional interface to Thread Library and notes on how to use the library. The file
"ThreadsTest.c" contains the source code for the ThreadsTest application; you can look at it
to see how threads are used in a simple application. You can also examine the file
"ThreadsTimed.c", which contains the source code to the ThreadsTimed application. Should
you need to examine the source code to Thread Library, you can look in the file
"ThreadLibrary.c".
Before you use Thread Library, you should run the ThreadsTest application (in the
"Executables" folder). The test application displays several identical dialogs, each
containing four lines of interest. The first two lines contain two counters, each incremented
in its own thread. The dialog is updated once a second by a third thread; the third line
shows the number of ticks elapsed between updates, and should be close to 60 ticks; the
fourth line shows the number of seconds remaining until the test ends. If the test of Thread
Library does not run correctly, then you should disable all extensions by holding down the
shift key while starting up your Macintosh and try running the test application again. If the
application still does not run correctly, then you may have discovered a bug in Thread
Library.

Minimal Use
Thread Library provides two interfaces. One is Thread Library's regular interface, which
has no resemblance to Apple's Thread Manager. The other interface is called Thread
Library Manager, and provides a largely functionally equivalent interface to Thread
Manager. If you are adding Thread Library to an application that already makes use of
Thread Manager, you can use the Thread Library Manager interface, which is described in
the section “Thread Library Manager”. This section describes the regular interface to
Thread Library.
You do not need to use all of the functions in Thread Library in order to use threads in your
application. At a minimum, you will need to use the functions ThreadBeginMain,
ThreadBegin, ThreadEnd, and ThreadYield. You may also want to use the functions
ThreadYieldInterval, ThreadMain, ThreadActive, and ThreadEndAll. In addition, you will
need to include the file "ThreadLibrary.h" in every file from which you make calls to Thread
Library.
A minimal application might be structured as follows (this is untested sample code):

Boolean gQuitting; /* true when exiting application */
Boolean gThreadsAvailable; /* true if can create threads */

static void EventLoop(void)
{

gQuitting = false;
8

9
while (! gQuitting) {

9

10
GetAndHandleOneEvent();
ThreadYield(0);

}
}

static void InitializeThreads(void)
{

gThreadsAvailable = true; /* assume we have threads */
(void) ThreadBeginMain(NULL, NULL, NULL);
if (ThreadError() != THREAD_ERROR_NONE) {

/* handle the error--you can still run your application,
but you cannot create any threads */
gThreadsAvailable = false;

}
}

void main(void)
{

ThreadType mainThread;

InitializeManagers();
InitializeThreads();
EventLoop();
ThreadEndAll();

}

At some point in your application, you might create a new thread:

...
ThreadType thread;
if (gThreadsAvailable) {

thread = ThreadBegin(MyThreadEntryPoint, NULL, NULL, NULL, 0);
if (ThreadError() != THREAD_ERROR_NONE) {

/* handle the error */
}

}
...

void MyThreadEntryPoint(ThreadDataType data)
{

Boolean done;

done = false;
while (! done) {

/* do a chunk of work and yield to other threads */
ThreadYield(0);

}
}
You will need to use additional Thread Library functions to support such features as
exception stacks (if your application uses exceptions); custom suspend, resume, and
termination callbacks; custom memory allocation callbacks; iteration over threads; custom
scheduling; termination of threads; and other facilities provided by Thread Library.

10

11

Linking
To add threads to your application, you need to link the appropriate library file with your
application. If you are developing a 68K application, you should link with the library
"ThreadLibrary-68K-Debug.o" while debugging your application; in your final application,
you should link with the library "ThreadLibrary-68K.o". If you are developing a PowerPC
application, you should link with the library "ThreadLibrary-PPC-Debug.o" while debugging
your application; in your final application, you should link with the library "ThreadLibrary-
PPC.o".

Segmentation
An application that uses Thread Library may be segmented just like any other application.
However, the segment containing Thread Library must be kept in memory so that context
switches will operate correctly. Also, segments containing inactive threads must not be
unloaded.

W A R N I N G

The segment containing Thread Library must not be unloaded while there are any threads,
and segments containing inactive threads must not be unloaded. ◆

Thread Serial Numbers
Every thread is assigned a unique serial number. Serial numbers are used to refer to
threads, rather than using a pointer, since there is always the possiblity that a thread may
have terminated before a pointer to a thread is used, which would make the pointer invalid.
The specific assignment of serial numbers to threads is not defined by the interface, though
every valid thread is guaranteed a non-zero serial number.

IMPORTANT

You should not assume that any thread will have a specific serial number. ◆

Time
All intervals and time periods in Thread Library use Macintosh ticks, which are measured
in increments of 1/60th of a second, starting at zero when the Macintosh is turned on. For
instance, a value of 60 passed to ThreadYield means that the current thread can yield the
processor for up to 1 second.

Concurrency

11

12
Threads introduce issues of concurrency and access to shared data in a single application.
In most reasonably engineered applications, it should not be too difficult to add threads for
certain separable tasks. However, you must be aware of, and alert to, the possiblity of
multiple threads attempting to access shared data. It may be necessary to provide basic
locking mechanisms to ensure correct execution of your application. Thread Library does
not provide locking mechanisms, but any good introductory book that discusses issues of
concurrent access to shared resources (such as books on operating systems or parallel
computation) should provide the information you need.

Context
The context maintained for each thread consists of the values of a subset of the CPU's
registers. Only registers accessible from user-mode programs are saved by Thread Library,
and only registers that are nonvolatile (i.e., whose values must be preserved across
function calls) are saved. The registers saved for the M68K version of Thread Library are
d3-d7/a2-a7/fp4-fp7. The registers saved for the PowerPC version of Thread Library are
GPR1, GPR2, GPR13-GPR31, FPR14-FPR31, and LR.

Detecting Errors
All errors are reported using the function ThreadError, which returns
THREAD_ERROR_NONE (defined as zero) if the last function called in Thread Library
completed successfully, otherwise it returns an error number. You should call this function
after every call to a function in Thread Library.

Handling Errors with Exceptions
If your application uses exceptions to handle errors, you will need to add a custom context
switching routine to your threads. Most implementations of exceptions work by modifying
the program counter and other registers to restore the state of the application and to jump
to an exception handling routine. The code needed to raise an exception typically keeps
track of which exception handler to jump to in a global variable. A problem can occur,
however, if the exception implementation attempts to jump to a routine that is part of an
inactive thread.
For instance, in the following code, the macros TRY, CATCH, and ENDTRY set up an
exception handler. The TRY macro indicates the statements to attempt to execute. If an
exception occurs while executing these statements, execution jumps to the statements
following the CATCH macro. The ENDTRY macro is used to terminate the exception
handler. The function ThrowThreadError raises an exception if ThreadError returns any
value other than THREAD_ERROR_NONE, and the function ThrowOSErr raises an
exception if passed any value other than noErr.

void thread1(ThreadDataType data)
{

Boolean done;

TRY {
(void) ThreadBegin(thread2, NULL, NULL, NULL, 0);
ThrowThreadError();
done = false;
while (! done) {

/* ... do something ... */
12

13
ThreadYield(0);

}
} CATCH {

cleanup();
} ENDTRY;

13

14
}

void thread2(ThreadDataType data)
{

while (! done_allocating_memory()) {
if (! allocate_some_memory())

ThrowOSErr(memFullErr);
ThreadYield(0);

}
}
Both thread1 and thread2 have their own private stack and CPU state. When thread2 raises
an exception, the exception raising code will attempt to jump to the last exception handler
specified. But the last exception handler was specified when thread1 was active. Since the
exception raising code does not know about other threads or about Thread Library, it
cannot properly switch contexts when the exception is raised. This situation will probably
result in a mysterious crash. Since the problem will only occur under extraordinary
circumstances (e.g., running out of memory), it will also be hard to reproduce and debug.
When you create a thread, you need to allocate memory to save the state of the exception
handler and you need to install your own custom context switching routines. At a minimum
you will need to provide suspend and resume callback functions for the thread. The
suspend function must save a copy of the state of the exception handler, while the resume
function must restore the state of the exception handler. You may also want to provide
begin and end callback functions to allocate and dispose of the exception stack. The
suspend, resume, begin, and end callback functions are described in more detail in the
section “Application Defined Protocol Functions”.

W A R N I N G

You must allocate a separate exception stack for each thread that uses exception handling.
You must also use suspend and resume callback functions in order to save and restore the
exception handling environment. ◆
You must also be careful to prevent exceptions from propagating beyond a thread's entry
point. For instance, a thread's entry point could be written as follows.

void thread(ThreadDataType data)
{

TRY {
/* ... do stuff ... */

} CATCH {
/* ... cleanup ... */
NOPROPAGATE;

} ENDTRY;
}
When an exception is raised in the thread, it will be prevented from propagating beyond
the thread's entry point by the NOPROPAGATE statement. If exceptions were allowed to
propagate beyond the entry point to the thread, they would cause the application to behave
in an undefined manner.

W A R N I N G

Exceptions must not propagate beyond a thread's entry point. ◆

14

15

Debugging
When you first use Thread Library, you should disable all optimizations and should link with
the library "ThreadLibrary-68K-Debug.o" or "ThreadLibrary-PPC-Debug.o". These libraries
were compiled with all of the debug code enabled (the preprocessor symbol
THREAD_DEBUG was defined as 1). Thread Library includes numerous assertions intended
to catch run-time errors. Once you know that threads work with your application, you can
enable compiler optimizations and test your application again to make sure it still runs.
The debug code will make Thread Library execute significantly slower than its optimal
speed. Since the debug code does not alter the functional specification of Thread Library,
you could ship a final version of your program with the debug code enabled, but the code
that uses threads would run slower than it would if the the debug code were disabled. It is
unfortunate that debug code must be disabled to achieve maximum performance.
Personally, I would like to leave debug code enabled, though modifying it to return an error
code or raise an exception instead of breaking into the debugger. To disable the debug
code, you should link your application with one of the libraries "ThreadLibrary-68K.o" or
"ThreadLibrary-PPC.o", which were compiled with the preprocessor symbol
THREAD_DEBUG defined as 0.
A stack overflow will often result in a corrupted heap, since the stack is allocated as a
nonrelocatable block in the heap (when using the default memory allocator) and overflow
usually overwrites the block's header. For this reason, you may be able to detect stack
overflow by enabling a heap-check option in a low-level debugger such as TMON or
MacsBug.
You can use source-level debuggers to debug applications that use Thread Library.
However, you should not attempt to step through the context switching code in Thread
Library, as this may cause your debugger to crash. This problem is only likely to occur if
you include the file "ThreadLibrary.c" in your application (rather than using one of the
compiled libraries) and you also attempt to step into the context switching code.

W A R N I N G

Using the THINK C or Metrowerks debuggers to trace through context switches may result
in corruption of the application's heap followed by a crash. The problem occurs if you place
a breakpoint or try to step too close to the register restoring code that accomplishes the
context switch in the function ThreadActivatePtr in the file "ThreadLibrary.c". I have
successfully used TMON Professional to trace through the context switches, and other low-
level debuggers (like MacsBug) should also work. ◆

Profiling
Profiling an application that uses threads presents problems similar to those described for
exception handling. In a nutshell, the problem is that profilers tend to maintain a single
stack of function calls for the application. But a multi-threaded application will have more
than one stack of function calls. This means that you will probably not be able to profile an
application that uses threads unless you modify the profiler. For instance, the profiler
supplied with THINK C versions 5.0.4 and 7.0.x will not work properly when threads are
used.

15

16
I have modified the THINK C profiler to work with threads, but cannot redistribute the
modified profiler due to Symantec's copyright in the original source code. In brief, THINK
C's profiler maintains a stack of called functions. This stack must be swapped for each
thread by using custom suspend and resume callback functions. Custom begin and end
callback functions can be used to allocate and dispose of the profiler's stack for the thread.
The most important modifications to the THINK C profiler consisted of placing all of the
global data maintained by the profiler into a single structure, and using a single global
variable to point to the current profiler data. The begin and end callback functions for my
threads allocate and deallocate a new profiler data structure for each thread, and the
suspend and resume functions for my threads save and restore the value of the profiler's
global variable.

W A R N I N G

When profiling your code, you may need to allocate a separate profiling stack for each
thread. You must also use suspend and resume callback functions to save and restore the
profiler's stack. This may require making modifications to the profiler supplied with your
development environment. ◆

Thread Library Manager
Apple's Thread Manager already provides a popular method of implementing threads. It
might seem that you would have to decide, before even using threads, whether you would
support Apple's Thread Manager or my Thread Library in your application. However,
included with Thread Library is another small library called Thread Library Manager
(TLM). TLM provides an interface to Thread Library that mimics the interface provided by
Apple's Thread Manager. The interface to TLM is the same as the interface to version 2.0.1
of Apple's Thread Manager, except that the names of the routines in TLM all start with the
letters "TLM". For instance, the routine TLMNewThread creates a new thread using Thread
Library, while TLMYieldToAnyThread allows other threads to execute.
Using TLM has several benefits over using Thread Library directly:
• you only have to know one set of interfaces to implement threads in any Macintosh

application;
• if you already know how to use Thread Manager, you will not need to learn much

additional information to use Thread Library;
• it is relatively easy to switch your code between use of Thread Manager and Thread

Library;
• it is automatically compatible with future releases of MacOS.

You can think of TLM as an automatic compatability layer for using Thread Manager. If
Thread Manager is available, the routines in TLM call directly to Thread Manager. If
Thread Manager is not available, then Thread Library is used instead. This provides your
application with automatic compatability with prior and future versions of MacOS. On
systems on which Thread Manager is not installed (i.e., systems prior to System 7.5 on
which the Thread Manager extension has not been installed) Thread Library is used to
simulate its operation. When Copland (System 8) redefines process architecture, your
application will automatically use the new version of Thread Manager, instead of Thread
Library (which may be incompatible with Copland).

16

17

Using Thread Library Manager
To use TLM you need to include the file "ThreadLibraryManager.h" in every source file that
calls Thread Manager routines. This file contains macros that define the Thread Manager
routine names to TLM routine names. You also need to link the appropriate Thread Library
binary with your application.
For an example of how easy it is to use TLM instead of Thread Manager, I was able to add
TLM to Apple's ThreadedSort sample program, which is distributed with Thread Manager
2.1, by:
1. adding the folder containing Thread Library to the access path for the ThreadedSort
CodeWarrior project files;
2. adding the file "ThreadLibrary-PPC.o" to the PPC CodeWarrior project and the file
"ThreadLibrary-68K.o" to the 68K CodeWarrior project.
3. adding the following line to the file "Sprocket.h":
#include "ThreadLibraryManager.h"
4. recompiling.
Once recompiled, the application ran without a glitch.

Differences From Thread Manager
You can read Apple's published documentation for a complete specification of Thread
Manager. Since TLM is nearly identical to Thread Manager, there is no need to describe
TLM in detail. If Thread Manager is available, then TLM should be effectively identical to
Thread Manager (since it simply calls through to Thread Manager). The differences when
Thread Manager is not available are:
• TLM does not support preemptive threads. In this respect, TLM operates like the

PowerPC version of Thread Manager. For instance, calling TLMNewThread with a
thread style parameter of kPreemptiveThread returns the error threadProtocolError.

• TLM only saves registers that must be saved across function calls, while Thread
Manager saves virtually all user-mode registers. This should not pose a problem,
however, since TLM can only be used with cooperative threads, which always yield the
processor by calling a function.

• TLM does not support thread pools. This is no great loss, since TLM does not support
preemptive threads. The routine TLMCreateThreadPool always returns noErr, but does
not create a thread pool. The routine TLMGetFreeThreadCount always returns a count
of zero and a result of noErr. The routine TLMGetSpecificThreadCount always returns a
count of zero and a result of noErr.

• The flags kUsePremadeThread, kCreateIfNeeded, kFPUNotNeeded, and
kExactMatchThread in the options parameter to TLMNewThread are ignored.

• The state of the floating point registers are always saved, both on 68K based
Macintoshes that have a floating point unit and on PowerPC based Macintoshes.

• TLMSetThreadTerminator will return threadProtocolErr if called for the main
application thread (kApplicationThreadID).

17

18
If you use TLM, then you should not call Thread Library directly. For instance, the IDs used
to refer to threads in TLM are not the same as the serial numbers used to refer to threads
in Thread Library.

Predicates
The descriptions of functions in this document use preconditions and postconditions
expressed as mathematical predicates. The preconditions and postconditions are not a
complete formal specification of the operation of the functions and their impact on the
remainder of the application. A complete formal specification would require more extensive
work and use of a formal specification language such as Z. The preconditions and
postconditions do, however, provide a reasonable statement on the operation of the
functions.
A function call can succeed if all of the predicates in its preconditions are true, and it will
attempt to ensure that all of the predicates in its postconditions are true when it has
finished executing. If a function is unable to ensure that its postconditions are true, then it
will set an error indicator, which the caller can later access. An error indicator may be set
even if the function was able to return a value allowed by its postconditions; for instance,
the error memFullErr might be set when the function ThreadBegin fails to create a new
thread. Since any function in Thread Library may set the error indicator, the following
postcondition is implicitely assumed for every function:

ThreadError'() = THREAD_ERROR_NONE ⇔ function was successful
where ThreadError'() is the value returned by calling ThreadError after the function has
been executed.
Since there is no tool to verify the implementation against the predicates, it is quite
possible that there are errors in the predicates. This is also the first time that I am using
mathematical predicates to describe the interface to a library, and I may have inadvertantly
made some mistakes in their use. Any ambiguity or contradiction in the description of a
function and its predicates may be resolved by examining the source code for Thread
Library.

Notation
The predicates use standard set notation, though occasional English statements are used
where appropriate. Following are the few adaptations I made to simplify the syntax of the
predicates.
• Multiple predicates are and'ed together. For instance, the predicates

a = 1.
b = 2.
are equivalent to
a = 1 ^ b = 2.

• Multiple predicates may be grouped together using square brackets. For instance,
a = 1 ⇒ [b = 2. c = 3.].

• Function composition is defined as
fn(x) =

18

19
fn(x) = x if n = 0,
fn(x) = f(fn-1(x)) if n > 0.

• Variables named in the parameter list to a function are accessible in the function's
preconditions and postconditions. The character ' is used to refer to the value of an
object (variable, set, or function) after the function has executed; the original value is
indicated by omitting the ' character. For instance, the predicate
ThreadCount'() = ThreadCount() + 1
states that the value returned by ThreadCount after the function has executed is one
greater than the value of ThreadCount before the function was executed. This notation
is used in the specification language Z.

• The predefined variable result contains the result of a function, and is defined only
within a function's postconditions. For instance, the predicate
result = x2

could be used to describe the C language function
double square(double x) { return(x * x); }
The use of a special variable to hold the result of a function is derived from the
language Eiffel.

Definitions
Several predefined constants and sets are used in the predicates.
The set of Boolean values is

Boolean ≡ { 0, 1 }.
The set of possible serial numbers is

SN ≡ { n : integer | n ≠ THREAD_NONE }.
The set of possible error numbers is

EN ≡ { n : integer | n ≠ THREAD_ERROR_NONE }.
The set of all serial numbers assigned to threads is

TAssigned = subset of SN
where the set TAssigned is initially empty, and elements are added to it by the thread
creation functions and removed from it by the thread destruction functions.
The set of all serial numbers that have been assigned is

TAssignedAll = subset of SN
where the set TAssignedAll is initially empty, and elements are added to it by the thread
creation functions. Elements are never removed from the set TAssignedAll. An immediate
corollary is that TAssigned is a subset of TAssignedAll.
The variable TMemoryAvailable is defined as the amount of memory available for use by
Thread Library. Notice that this value may differ from the amount of memory available for
use by the application, which is denoted by AppMemoryAvailable.
It is possible to formally define some of the types used in Thread Library. For instance,

ThreadSizeType ≡ { n : integer | 0 ≤ n ≤ THREAD_SIZE_MAX }

19

20
ThreadType ≡ (SN ∪ { THREAD_NONE }) = { n: integer | -∞ < n < ∞ }

Such formal definitions, however, would only be necessary in a full specification language,
and are therefore omitted from the predicates.

Note

The special types and sets defined in this section are not part of Thread Library, and are
used only within this document. ◆

Functional Interface
This section describes the functional interface to Thread Library. Every function's
description is divided into the sections name, syntax, parameters, returns, preconditions,
postconditions, and description.
name The name of the function, in boldface text.
syntax The syntax of the function (types of parameters and type of return value,

if any).
parameters Short English descriptions of the parameters to the function. This section

may be omitted.
returns Short English description of the value returned by the function. This

section may be omitted.
preconditions A set of mathematical predicates that specify the conditions that must be

true for a call to the function to succeed.
postconditions A set of mathematical predicates that specify the conditions that will be

true following a successful call to the function.
description An English description of the operation of the function.
The preconditions and postconditions may be skipped, as the syntax and description
sections of the functions provide sufficient information for their use.

Error Handling
The functions described in this section provide support for detection of errors encountered
while executing other functions in Thread Library.

ThreadError
ThreadErrorType ThreadError(void)

Preconditions
No special preconditions.

Postconditions
result ∈ (EN ∪ { THREAD_ERROR_NONE }).
result = THREAD_ERROR_NONE ⇔ last operation was successful.

Description

20

21
ThreadError returns THREAD_ERROR_NONE if the last function in Thread Library
completed successfully, or an error number corresponding to the reason that the function
failed. ThreadError does not itself modify the error code, so consecutive calls to
ThreadError will return the same value, provided no intervening calls to other functions in
Thread Library are made.
You should call ThreadError after every call to a function in ThreadLibrary. If an error code
is returned, then the function was unable to fulfill your request and you should take
appropriate actions to recover from the error or to report the error to the user.
Typical errors occur when:
• Thread Library is unable to acquire some resource, such as memory for a new thread;
• an invalid serial number is passed to a Thread Library function;
• one or more of the preconditions to a Thread Library function is violated by the caller,

such as attempting to terminate the main thread before all other threads have been
terminated (such error detection might only be available if debug code has been
enabled).

ThreadErrorSet
void ThreadErrorSet(ThreadErrorType error)

Preconditions
error ∈ (EN ∪ { THREAD_ERROR_NONE }).

Postconditions
ThreadError'() = error.

Description
ThreadErrorSet sets the value that will be returned by a subsequent call to ThreadError.
Interveninig calls to other functions in Thread Library may alter the value returned by
ThreadError.
You usually will not need to call ThreadErrorSet. You might use this function, for instance,
from a special purpose memory allocator in which you may need to indicate that memory
could not be allocated and that Thread Library should abort the operation that attempted
to allocate the memory.

Thread Creation and Destruction
This section describes the functions that are used to create and destroy threads.

ThreadBegin
ThreadType ThreadBegin(ThreadProcType entry, ThreadProcType suspend,
ThreadProcType resume, ThreadDataType data, ThreadSizeType stack_size)

Parameters
entry a pointer to a function that is called to start executing the thread.
suspend a pointer to a function called whenever the thread is suspended. You can

use the suspend function to save application-defined context for the
thread.

resume a pointer to a function called whenever the thread is resumed. You can
use the resume function to restore application-defined context for the

21

22
thread.

22

23
data passed to the entry, suspend, and resume functions and may contain a

pointer to any application-defined data.
stack_size specifies the size of the stack needed by the thread.
The entry, suspend, and resume callback functions are described in more detail in the
section “Application Defined Protocol Functions”.

Returns
The serial number of a new thread, or THREAD_NONE if a new thread could not be
created.

Preconditions
TAssignedAll ≠ ∅.
entry = valid entry function.
suspend ∈ { NULL , valid suspend function }.
resume ∈ { NULL , valid resume function }.
data ∈ { NULL , valid pointer }.
0 ≤ stack_size ≤ THREAD_SIZE_MAX.

Postconditions
result ∉ TAssignedAll.
result ∈ (SN ∪ { THREAD_NONE }).
result ≠ THREAD_NONE ⇔

[ThreadCount'() = ThreadCount() + 1.
TAssigned' = (TAssigned ∪ { result }).
TAssignedAll' = (TAssignedAll ∪ { result }).
ThreadNextThreadCount'()-1(ThreadFirst'()) = result.]

result ≠ THREAD_NONE ⇒
[ThreadEnabled(result) = true.
ThreadWakeTime(result) = 0.
ThreadProcBegin(result) = NULL.
ThreadProcEnd(result) = NULL.
ThreadProcEntry(result) = entry.
ThreadProcSuspend(result) = suspend.
ThreadProcResume(result) = resume.
ThreadData(result) = data.
ThreadStackSize(result) = stack_size.
TMemoryAvailable' ≤ TMemoryAvailable -

ThreadMemorySize(0, THREAD_TYPE_THREAD) -
ThreadMemorySize(stack_size, THREAD_TYPE_STACK).]

23

24
Description

ThreadBegin creates a new thread and returns the thread's serial number. You must create
the main thread with ThreadBeginMain before you can call ThreadBegin.
ThreadBegin returns immediately after creating the new thread. The thread, however, is
not executed immediately. It is added to the end of the queue of threads, and will be
selected for execution by ThreadSchedule according to the scheduling algorithm. When the
thread is executed, the function specified in the entry parameter is called. When the
function has returned, the thread is removed from the queue of threads and its stack and
any private storage allocated by ThreadBegin are discarded.
The requested stack size should be large enough to contain all function calls, local
variables and parameters, and any operating system routines that may be called while the
thread is active (including interrupt driven routines). If the requested stack size is zero,
then the default stack size returned by ThreadStackDefault is used.
It is a good idea to set the stack size to at least the value returned by
ThreadStackMinimum; otherwise, your application is likely to crash somewhere inside the
operating system. If your thread crashes, try increasing the thread's stack size.

W A R N I N G

Your application may crash if you do not specify a large enough size for a thread's stack. ◆
ThreadBeginMain

ThreadType ThreadBeginMain(ThreadProcType suspend, ThreadProcType resume,
ThreadDataType data)
suspend a pointer to a function called whenever the thread is suspended. You can

use the suspend function to save application-defined context for the
thread.

resume a pointer to a function called whenever the thread is resumed. You can
use the resume function to restore application-defined context for the
thread.

data passed to the entry, suspend, and resume functions and may contain a
pointer to any application-defined data.

The suspend and resume callback functions are described in more detail in the section
“Application Defined Protocol Functions”.

Returns
The serial number of the main thread, or THREAD_NONE if the main thread could not be
created.

Preconditions
TAssignedAll = ∅.
suspend ∈ { NULL , valid suspend function }.
resume ∈ { NULL , valid resume function }.
data ∈ { NULL , valid pointer }.
0 ≤ stack_size ≤ THREAD_SIZE_MAX.

24

25
Postconditions

result ∉ TAssignedAll.
result ∈ (SN ∪ { THREAD_NONE }).
result ≠ THREAD_NONE ⇔

[ThreadCount'() = 1.
TAssigned' = { result }.
TAssignedAll' = { result }.
ThreadMain'() = ThreadActive'() = ThreadFirst'() = result.]

result ≠ THREAD_NONE ⇒
[ThreadEnabled(result) = true.
ThreadWakeTime(result) = 0.
ThreadProcSuspend(result) = suspend.
ThreadProcResume(result) = resume.
ThreadData(result) = data.

TMemoryAvailable' ≤ TMemoryAvailable -
ThreadMemorySize(0, THREAD_TYPE_THREAD).]

Description
ThreadBeginMain creates the main application thread and returns the main thread's serial
number. You must call this function before creating any other threads with ThreadBegin.
You must also call MaxApplZone before calling this function. The resume, suspend, and
data parameters have the same meanings as the parameters to ThreadBegin.
There are several important differences between the main thread and all subsequently
created threads.
• The main thread is responsible for handling events sent to the application, and is

therefore scheduled differently from other threads; see the function ThreadSchedule for
details.

• The main thread uses the application's stack and context; no private stack is allocated
for the main thread. Initially, there is therefore no need to change the context to start
executing the thread, and no special entry point is required. But, like all other threads,
the main thread's context will be saved whenever it is suspended to allow another
thread to execute, and its context will be restored when it is resumed.

• While other threads do not begin executing until they are scheduled to execute, the
main thread is designated as the active thread as soon as ThreadBeginMain returns.

• Since other threads have a special entry point, they are automatically disposed of when
that entry point returns. The main thread, lacking any special entry point, must be
disposed of by the application. You should call ThreadEnd, passing it the thread
returned by ThreadBeginMain or ThreadMain, before exiting your application.

25

26
ThreadEnd

void ThreadEnd(ThreadType thread)
Preconditions

thread ∈ (TAssigned ∪ { THREAD_NONE }).
Postconditions

thread ∉ TAssigned'.
∀ n: integer • 0 ≤ n < ThreadCount'() ⇒ ThreadNext'n(ThreadFirst'()) ≠ thread.
thread ≠ THREAD_NONE ⇒

[ThreadCount'() = ThreadCount() - 1.
TAssigned' = (TAssigned \ { thread }).
thread = ThreadMain() ⇒

[TMemoryAvailable' ≥
TMemoryAvailable + ThreadMemorySize(0,

THREAD_TYPE_THREAD).
ThreadMain'() = ThreadActive'() = ThreadFirst'() = THREAD_NONE.]

thread ≠ ThreadMain() ⇒
[thread = ThreadActive() ⇒ ThreadActive'() = ThreadSchedule'().
TMemoryAvailable' ≥ TMemoryAvailable +

ThreadMemorySize(0, THREAD_TYPE_THREAD) +
ThreadMemorySize(ThreadStackSize(thread),

THREAD_TYPE_STACK).]]
Description

ThreadEnd removes the thread from the queue of threads and disposes of the memory
allocated for the thread. If the thread is the active thread, then it is deactivated and the
next scheduled thread is activated. The main thread cannot be disposed of until all other
threads have been discarded. ThreadEnd is called automatically when the entry point of a
thread returns, so there is often no need to explicitely call ThreadEnd.

ThreadEndAll
void ThreadEndAll(void)

Preconditions
ThreadActive() = ThreadMain().

Postconditions
TAssigned' = ∅.
ThreadCount'() = 0.
ThreadMain'() = ThreadActive'() = ThreadFirst'() = THREAD_NONE.

Description
ThreadEndAll disposes of all threads, including the main thread. ThreadEndAll is useful
when your application is terminating and you want to dispose of any threads that may still
exist. ThreadEndAll can be called only from within the main thread.

26

27

Scheduling
The functions described in this section control the scheduling and activation of threads.
The three functions ThreadSchedule, ThreadActivate, and ThreadYield handle the
scheduling and context switching of threads. These functions will likely be executed the
most often of any of the functions in Thread Library, and therefore will have the greatest
impact on its efficiency. If you find Thread Library's context switches too slow, you could
improve the efficiency of these functions.

ThreadYield
void ThreadYield(ThreadTicksType sleep)

Preconditions
TAssigned ≠ ∅.
0 ≤ sleep ≤ THREAD_TICKS_MAX.

Postconditions
0 ≤ | ThreadWakeTime'(ThreadActive()) - (t + sleep + δ) | ≤ ε;

t ≡ time at which ThreadYield was called;
δ ≡ delay to execute ThreadWakeTimeSet.

Description
ThreadYield activates the next scheduled thread as determined by ThreadSchedule. The
sleep parameter has the same meaning as the parameter to ThreadSleepIntervalSet.

Note

See the note for ThreadActivate. ◆
ThreadYieldInterval

ThreadTicksType ThreadYieldInterval(void)
Preconditions

ThreadCount() > 0.
Postconditions

0 ≤ result ≤ THREAD_TICKS_MAX.
Description

ThreadYieldInterval returns the maximum time until the next call to ThreadYield. The
interval is computed by subtracting the current time from each thread's wake time, giving
the amount of time that each thread can remain inactive. The minimum of these times gives
the maximum amount of time until the next call to ThreadYield. The wake time of the
current thread is ignored, since the thread is already active. You can use the returned value
to help determine the maximum sleep value to pass to WaitNextEvent.

ThreadSchedule
ThreadType ThreadSchedule(void)

Preconditions
TAssigned ≠ ∅.

27

28
Postconditions

result ∈ TAssigned.
ThreadEnabled(result) = true.
result ≠ ThreadMain() ⇒ ThreadWakeTime(result) ≤ t;

t ≡ time at which ThreadSchedule returns.
Description

ThreadSchedule returns the next thread to activate. Threads are maintained in a queue and
are scheduled in a round-robin fashion. Starting with the active thread, the queue of
threads is searched for the next enabled thread whose wake time has arrived. The first
such thread found is returned.
In addition to the round-robin scheduling shared with all threads, the main thread will also
be activated if any events are pending in the event queue. The application can then
immediately handle the events, allowing the application to remain responsive to user
actions such as mouse clicks. The main thread will also be activated if no other threads are
scheduled for activation, which allows the application to either continue with its main
processing or to call WaitNextEvent and sleep until a thread needs to be activated or some
other task or event needs to be handled.

ThreadActivate
void ThreadActivate(ThreadType thread)

Preconditions
thread ∈ TAssigned.
ThreadEnabled(thread) = true.

Postconditions
ThreadNextThreadCount()-1(ThreadFirst'()) = ThreadActive() = thread

Description
ThreadActivate deactivates the currently active thread and makes the specified thread the
active thread. The activated thread is moved to the end of the queue of threads.

Note

ThreadActivate does not return to its caller until the activated thread yields the processor
and the caller's thread is reactivated. Also, any number of additional calls to functions in
Thread Library may be made before ThreadActivate returns to its caller; these function
calls could change data shared amongst all threads, such as TAssigned. In fact, the
function ThreadActivate might never even return to its caller. This means that the set of
postconditions given above is incomplete. ◆

ThreadEnabled
Boolean ThreadEnabled(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
result ∈ Boolean.

28

29
Description

ThreadEnabled returns true if the thread is enabled. An enabled thread is eligible for
execution by the scheduler, while a disabled thread is not scheduled for execution. Threads
are enabled when they are created, and remain enabled unless you explicitely disable them
with ThreadEnabledSet.

ThreadEnabledSet
void ThreadEnabledSet(ThreadType thread, Boolean enabled)

Preconditions
ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).
enabled ∈ Boolean.

Postconditions
ThreadEnabled'(thread) = enabled.

Description
ThreadEnabledSet enables or disables the thread. A disabled thread is not eligible for
scheduling by ThreadSchedule. If called for the active thread, the thread remains active
until the next call to ThreadYield or ThreadActivate. You cannot disable the main thread,
since there must always be a default thread that can be activated when no other threads
are available.

ThreadWakeTime
ThreadTicksType ThreadWakeTime(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
0 ≤ result ≤ THREAD_TICKS_MAX.

Description
ThreadWakeTime returns the time when the specified thread will become eligible for
scheduling. The wake time is typically determined indirectly by the value passed to
ThreadYield.

ThreadWakeTimeSet
void ThreadWakeTimeSet(ThreadType thread, ThreadTicksType wake)

Parameters
sleep specifies when the thread will become eligible for scheduling.

Preconditions
thread ∈ TAssigned.
0 ≤ wake ≤ THREAD_TICKS_MAX.

Postconditions
ThreadWakeTime'(thread) = wake.

29

30
Description

ThreadWakeTimeSet sets the time when the specified thread will become eligible for
scheduling. The wake time is typically determined indirectly by the value passed to
ThreadYield.

ThreadSleepSet
void ThreadSleepSet(ThreadType thread, ThreadTicksType sleep)

Description
This is a synonym for the function ThreadSleepIntervalSet. This function is included for
compatability with prior versions of Thread Library.

ThreadSleepIntervalSet
void ThreadSleepIntervalSet(ThreadType thread, ThreadTicksType sleep)

Parameters
sleep specifies the maximum amount of time that the thread can remain

inactive.
Preconditions

thread ∈ TAssigned.
0 ≤ sleep ≤ THREAD_TICKS_MAX.

Postconditions
0 ≤ | ThreadWakeTime'(thread) - (t + sleep + δ) | ≤ ε;

t ≡ time at which ThreadSleepIntervalSet was called;
δ ≡ delay to execute ThreadWakeTimeSet.

Description
ThreadSleepIntervalSet sets the amount of time that the specified thread will remain
inactive. The larger the sleep value, the more time is available for execution of other
threads. When called from the main thread, you can pass a sleep parameter equal to the
maximum interval between null events; if no null events are needed, you can pass a sleep
value of THREAD_TICKS_MAX. The main thread will continue to receive processing time
whenever an event is pending and when no other threads are scheduled (see
ThreadSchedule). If the thread is already active, the sleep time specified will be used when
the thread is inactive and is thus eligible for scheduling by ThreadSchedule.
ThreadSleepIntervalSet is normally called by ThreadYield, but you may need to use it if you
call ThreadSchedule or ThreadActivate.
ThreadSleepIntervalSet is a convenient way to call ThreadWakeSet when you want to delay
execution of a thread for some amount of time. For instance, the following call to
ThreadSleepIntervalSet,
ThreadSleepIntervalSet(sleep)
is approximately equivalent to
ThreadWakeSet(time + sleep)
The only difference of note is that the calculation time + sleep made in
ThreadSleepIntervalSet takes care to avoid arithmetic overflow, which could result, for
instance, from a sleep value of THREAD_TICKS_MAX.

30

31

Accessing the Queue of Threads
All threads created by the application are kept in a circular queue of threads. A circular
queue is used to provide fair round-robin scheduling to all threads. You can use the
functions described in this section to access all of the threads your application has created.
Using these functions, and the function ThreadActivate, you could, for instance, implement
your own scheduler to replace the functions ThreadSchedule and ThreadYield.
An invariant relating ThreadCount, ThreadFirst, ThreadNext, and TAssigned is
∀ t: thread • t ∈ TAssigned ⇔

∃ n: integer • 0 ≤ n < ThreadCount() ⇒ ThreadNextn(ThreadFirst()) = t.
ThreadCount

long ThreadCount(void)
Preconditions

No special preconditions.
Postconditions

0 ≤ result
result = 0 ⇔ TAssigned = ∅.

Description
ThreadCount returns the number of threads in the queue, which is equivalent to the
number of elements in the set TAssigned.

ThreadMain
ThreadType ThreadMain(void)

Preconditions
No special preconditions.

Postconditions
result ∈ (TAssigned ∪ { THREAD_NONE }).
result = THREAD_NONE ⇔ TAssigned = ∅.

Description
ThreadMain returns the main thread, or THREAD_NONE if there are no threads.

ThreadActive
ThreadType ThreadActive(void)

Preconditions
No special preconditions.

Postconditions
result ∈ (TAssigned ∪ { THREAD_NONE }).
result = THREAD_NONE ⇔ TAssigned = ∅.

31

32
Description

ThreadActive returns the currently active thread, or THREAD_NONE if there are no
threads.

ThreadFirst
ThreadType ThreadFirst(void)

Preconditions
No special preconditions.

Postconditions
result ∈ (TAssigned ∪ { THREAD_NONE }).
result = THREAD_NONE ⇔ TAssigned = ∅.

Description
ThreadFirst returns the first thread in the queue of threads, or THREAD_NONE if there are
no threads.

ThreadNext
ThreadType ThreadNext(ThreadType thread)

Preconditions
thread ∈ (TAssigned ∪ { THREAD_NONE }).

Postconditions
result ∈ (TAssigned ∪ { THREAD_NONE }).
result = THREAD_NONE ⇔ thread = THREAD_NONE.
result = thread ⇔ ThreadCount() ≤ 1.

Description
ThreadNext returns the next thread in the circular queue of threads, or THREAD_NONE if
there are no threads.
Since the queue is circular, and since ThreadCount gives the number of items in the queue,
it is always true that
ThreadNextThreadCount()(thread) = thread.

Information About the Stack
The functions described in this section can be used to help determine the size of a new
thread's stack and provide information about the space available in an existing thread's
stack.

ThreadStackMinimum
ThreadSizeType ThreadStackMinimum(void)

Preconditions
No special preconditions.

Postconditions
0 ≤ result ≤ ThreadStackDefault().

32

33
Description

ThreadStackMinimum returns the recommended minimum stack size for a thread. Thread
Library does not enforce a lower limit on the stack size, but it is a good idea to allow at
least the number of bytes returned by ThreadStackMinimum for a thread's stack.

ThreadStackDefault
ThreadSizeType ThreadStackDefault(void)

Preconditions
No special preconditions.

Postconditions
ThreadStackMinimum() ≤ result ≤ THREAD_SIZE_MAX.

Description
ThreadStackDefault returns the default stack size for a thread. This is the amount of stack
space reserved for a thread if a zero stack size is passed to ThreadBegin.

ThreadStackSize
ThreadSizeType ThreadStackSize(ThreadType thread);

Preconditions
thread ∈ TAssigned.

Postconditions
0 ≤ result ≤ THREAD_SIZE_MAX.

Description
ThreadStackSize returns the amount of space, in bytes, allocated for the thread's stack. For
the main thread, this is the space allocated by the Process Manager for the application's
stack (and possibly adjusted by the application). For all other threads, this is the same as
the stack_size parameter passed to ThreadBegin when the thread was created.

ThreadStackSpace
ThreadSizeType ThreadStackSpace(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
0 ≤ result ≤ ThreadStackSize(thread).

Description
ThreadStackSpace returns the amount of stack space remaining in the specified thread.
There are at least the returned number of bytes between the thread's stack pointer and the
bottom of the thread's stack, though slightly more space may be available to the application
due to overhead from Thread Library.

33

34

IMPORTANT

The trap StackSpace will return incorrect results if called from any thread other than the
main thread. Likewise, using the low-memory globals ApplLimit, HeapEnd, or
CurStackBase to determine the bounds of a thread's stack will produce incorrect results
when used outside of the main thread. Instead of calling StackSpace, use
ThreadStackSpace to determine the amount of free stack space in a thread. ◆

Application Defined Data
The functions described in this section provide access to the application-defined data for
threads. You can use a thread's application-defined data pointer to store a pointer to any
data that your application may want to access. The data pointer is especially useful for
providing contextual information to callback functions, such as suspend and resume
callbacks, that you might specify for a thread.

ThreadData
ThreadDataType ThreadData(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
result ∈ { NULL , valid pointer }.

Description
ThreadData returns the application-defined data pointer of the thread.

ThreadDataSet
void ThreadDataSet(ThreadType thread, ThreadDataType data)

Preconditions
thread ∈ TAssigned.
data ∈ { NULL , valid pointer }.

Postconditions
ThreadData'(thread) = data.

Description
ThreadDataSet sets the application-defined data pointer of the thread.

Accessing Application Defined Memory Allocation Functions
This section describes the functions you can use to access the application-defined memory
allocation functions. The memory allocation functions are described in more detail in the
section “Application Defined Memory Allocation Functions”.

ThreadProcAllocate
ThreadProcAllocateType ThreadProcAllocate(void)

Preconditions
No special preconditions.

34

35
Postconditions

result ∈ { NULL, address of memory allocation function }.
Description

ThreadProcAllocate returns the function used to allocate memory, or NULL if the default
function is being used.

ThreadProcAllocateSet
void ThreadProcAllocateSet(ThreadProcAllocateType alloc)

Parameters
alloc pointer to application-defined memory allocation function.

Preconditions
alloc ∈ { NULL, address of memory allocation function }.

Postconditions
ThreadProcAllocate'() = alloc.

Description
ThreadProcAllocateSet sets the function used to allocate memory. If you specify NULL, then
the default function will be used.

ThreadProcDispose
ThreadProcDisposeType ThreadProcDispose(void)

Preconditions
No special preconditions.

Postconditions
result ∈ { NULL, address of memory disposal function }.

Description
ThreadProcDispose returns the function used to dispose of memory, or NULL if the default
function is being used.

ThreadProcDisposeSet
void ThreadProcDisposeSet(ThreadProcDisposeType dispose)

Parameters
dispose pointer to application-defined memory disposal function.

Preconditions
dispose∈ { NULL, address of memory disposal function }.

Postconditions
ThreadProcDispose'() = dispose.

Description
ThreadProcDisposeSet sets the function used to dispose of memory. If you specify NULL,
then the default function will be used.

35

36

Accessing Application Defined Protocol Functions
This section describes the functions that provide access to the application-defined protocol
functions for a thread. The protocol functions are described in more detail in the section
“Application Defined Protocol Functions”.

ThreadProcBegin
ThreadProcBeginEndType ThreadProcBegin(ThreadType thread)

Preconditions
ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).

Postconditions
result ∈ { NULL, address of begin function }.

Description
ThreadProcBegin returns the begin function for the thread.

ThreadProcBeginSet
void ThreadProcBeginSet(ThreadType thread, ThreadProcBeginEndType begin)

Preconditions
ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).
begin ∈ { NULL, address of begin function }.

Postconditions
ThreadProcBegin'(thread) = begin.

Description
ThreadProcBeginSet sets the begin function for the thread.

ThreadProcEnd
ThreadProcBeginEndType ThreadProcEnd(ThreadType thread)

Preconditions
ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).

Postconditions
result ∈ { NULL, address of end function }.

Description
ThreadProcEnd returns the end function for the thread.

ThreadProcEndSet
void ThreadProcEndSet(ThreadType thread, ThreadProcBeginEndType end)

36

37
Preconditions

ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).
end ∈ { NULL, address of end function }.

Postconditions
ThreadProcEnd'(thread) = end.

Description
ThreadProcEndSet sets the end function for the thread.

ThreadProcResume
ThreadProcType ThreadProcResume(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
result ∈ { NULL, address of resume function }.

Description
ThreadProcResume returns the resume function for the thread.

ThreadProcResumeSet
void ThreadProcResumeSet(ThreadType thread, ThreadProcType resume)

Preconditions
thread ∈ TAssigned.
resume ∈ { NULL, address of resume function }.

Postconditions
ThreadProcResume'(thread) = resume.

Description
ThreadProcResumeSet sets the resume function for the thread.

ThreadProcSuspend
ThreadProcType ThreadProcSuspend(ThreadType thread)

Preconditions
thread ∈ TAssigned.

Postconditions
result ∈ { NULL, address of suspend function }.

Description
ThreadProcSuspend returns the suspend function for the thread.

ThreadProcSuspendSet
void ThreadProcSuspendSet(ThreadType thread, ThreadProcType suspend)

37

38
Preconditions

thread ∈ TAssigned.
suspend ∈ { NULL, address of suspend function }.

Postconditions
ThreadProcSuspend'(thread) = suspend.

Description
ThreadProcSuspendSet sets the suspend function for the thread.

ThreadProcEntry
ThreadProcType ThreadProcEntry(ThreadType thread)

Preconditions
ThreadMain() ∈ TAssigned
thread ∈ (TAssigned \ { ThreadMain() }).

Postconditions
result ≠ NULL

Description
ThreadProcEntry returns the entry function for the thread.

ThreadProcEntrySet
void ThreadProcEntrySet(ThreadType thread, ThreadProcType entry)

Preconditions
thread ∈ (TAssigned \ { ThreadMain() }).
entry = address of entry function.

Postconditions
ThreadProcEntry'(thread) = entry.

Description
ThreadProcEntrySet sets the entry function for the thread.

Application Defined Protocol Functions
The application can install functions that are called at specific times during a thread's
lifetime. Each thread can have its own set of unique functions, which can be unrelated to
the functions installed for any other thread. The functions are: begin, end, resume,
suspend, and entry. Of these functions, the main thread uses only the resume and suspend
functions. All other threads can use all of the functions, though only the entry function is
required.

Call Sequence of Protocol Functions
Over the lifetime of a thread, the following sequence of function calls is made:

38

39
begin
resume
entry
(suspend, resume)0..N
suspend
end
First, the begin function is called. Then, the resume function is called once. Next, the entry
function is called. While the entry function is executing, any number of calls to the suspend
and resume functions may be made, depending on how many times the thread is activated
and deactivated. When the thread is terminated, the suspend function is called once if the
thread was active when it was terminated. Finally, the end function is called.
There is one special case that will occur when a thread is created and subsequently
destroyed without ever having been activated. Since the thread was never activated, and
therefore never started executing, there is no time at which the begin, resume, suspend, or
entry functions could be called. In this case, only the end function will be called. For
instance,

...
ThreadType thread = ThreadBegin(thread_entry, thread_suspend, thread_resume,
thread_data, thread_stack_size);
ThreadProcBeginSet(thread, thread_begin);
ThreadProcEndSet(thread, thread_end);
ThreadEnd(thread);
...
In this sequence of calls, the function thread_end will be the only function that is called by
Thread Library. Depending on your point of view, this "feature" may be considered a bug in
the thread protocol. I have not decided whether this should be considered a feature of, or
an error in, the protocol.
You may notice some redundancy in the sequence in which the callbacks are executed. For
instance, the begin function is always called before the entry function, yet both functions
are called exactly once, and so either function can be used for special initializations
required by the thread. Yet the begin function is clearly symmetrical to the end function,
and the end function is certainly required for proper use of Thread Library for those
threads that need a special termination function. The choice of call sequences was partially
constrained by the need to maintain reasonable compatability with prior versions of Thread
Library. The decision as to the types of functions called and when they would be called was
based on the completeness and symmetry of the current solution.

Main Thread
The main thread can use only the resume and suspend functions. The purpose of the call to
ThreadBeginMain is to initialize Thread Library, and to store information about the main
thread so that it can be activated and deactived by Thread Library. The begin, end, and
entry functions are never used, since the main thread starts executing before Thread
Library is ever called, and continues to execute even after disposing of all threads
(including the main thread).

39

40

Environment When Protocol Functions are Called
When any of the functions other than the begin and end functions is called, the stack is set
to the stack of the thread for which the function was installed, and the active thread is set
to that thread. Thus, the functions can access the thread into which they were installed by
calling ThreadActive. Unlike the other functions, however, the begin and end functions
might be called while a different thread is active, and may therefore not access their thread
by calling ThreadActive and may not make assumptions about the contents of the thread's
stack. This restriction is necessary since the begin function may be called when the thread
is created from within a separate thread, and the thread may be terminated by a call to
ThreadEnd that is executed from a separate thread.

Functional Interface of Protocol Functions
This section describes the functional interface that the application-defined protocol
functions must use.

Begin
void begin(ThreadType thread, ThreadDataType data);

Parameters
thread thread for which the function is called;
data pointer to thread's application-defined data.

Preconditions
ThreadMain() ∈ TAssigned.
thread ∈ (TAssigned \ { ThreadMain() }).
data = ThreadData(thread).

Postconditions
No special postconditions.

Description
Called once before the thread starts executing. You can use this function to do any special
initialization of the thread.
The begin function is optional and may be set to NULL.

End
void end(ThreadType thread, ThreadDataType data);

Parameters
thread thread for which the function is called;
data pointer to thread's application-defined data.

Preconditions
ThreadMain() ∈ TAssigned.
thread ∈ (TAssigned \ { ThreadMain() }).
data = ThreadData(thread).

40

41
Postconditions

No special postconditions.
Description

Called whenever ThreadEnd is called for the thread, whether explicitely by your
application, or implicitely by Thread Library when the thread's entry point returns. You can
use this function to do any special termination of the thread, such as disposing of memory
allocated for the thread. This function is especially useful if a thread is terminated with
ThreadEnd while it is not the active thread. By specifying an end function for the thread,
the application can dispose of any memory it allocated.
The end function is optional and may be set to NULL.

Resume
void resume(ThreadDataType data);

Parameters
data pointer to thread's application-defined data.

Preconditions
ThreadActive() ∈ TAssigned.
data = ThreadData(ThreadActive()).

Postconditions
No special postconditions.

Description
Called whenever the thread is activated and once before the entry point is executed. You
can access the thread for which the resume function was called by calling ThreadActive.
You can use this function to do any special configuration of your thread that must occur
whenever it is activated. For instance, if you are using exceptions to handle errors, you
might need to swap the exception environment to the exception environment for the
thread.
The resume function is optional and may be set to NULL.

Suspend
void suspend(ThreadDataType data);

Parameters
data pointer to thread's application-defined data.

Preconditions
ThreadActive() ∈ TAssigned.
data = ThreadData(ThreadActive()).

Postconditions
No special postconditions.

Description

41

42
Called whenever the thread is suspended and once after the entry point of the thread has
returned. The suspend function is called exactly the same number of times as the resume
function. You can access the thread for which the suspend function was called by calling
ThreadActive. You can use this function to undo any special configuration of your thread
that you did in the resume function.
The suspend function is optional and may be set to NULL.

Entry
entry(ThreadDataType data);

Parameters
data pointer to thread's application-defined data.

Preconditions
ThreadActive() ∈ TAssigned.
data = ThreadData(ThreadActive()).

Postconditions
No special postconditions.

Description
This function is the entry point for the thread. When your thread is first activated, the entry
function is called. When the entry function returns, the thread is terminated by a call to
ThreadEnd. A thread can also be terminated at any time (whether or not it is the active
thread) by a direct call to ThreadEnd. You can access the thread for which the entry
function is called by calling ThreadActive.
The entry function is required.

Memory Allocation
Thread Library provides two types of memory allocation, which it uses to dynamically
allocate and dispose of pointers to blocks of memory.
If you do not specify a memory allocation method, then the default allocator uses the
Memory Manager calls NewPtr and DisposePtr to allocate and dispose of memory. This
method of memory allocation is sufficient for most users.
The application can also specify its own memory allocator. The application's memory
allocator can be used to further tune the performance of Thread Library and can be used to
integrate the blocks of memory used by Thread Library with the memory allocation scheme
used by the rest of your application. This method of allocation is more complex than the
default method, and requires additional work to implement, but also provides the greatest
flexibility.

Allocation Algorithm

42

43
When Thread Library needs to allocate memory, it first check for an application-defined
memory allocation function. If a function was provided by the application, then that
function is used. If the function sets the error code using ThreadErrorSet to any value
other than THREAD_ERROR_NONE, then Thread Library assumes that the memory
allocation request failed. If the function returns NULL, but does not use ThreadErrorSet to
set the error code, then Thread Library will attempt to allocate the memory using the
default allocation method. Thus, it is generally sufficient for the memory allocation function
to return NULL if sufficient memory was not available. If the memory allocation failed
because of some other reason, or if you do not want Thread Library to allocate the memory
using a different method, you can call ThreadErrorSet with an appropriate error code.
If the application did not specify a memory allocation function, or if the memory allocation
callback returned NULL (but did not set the error code) then Thread Library attempts to
allocate the memory using NewPtr. If NewPtr returns NULL, then Thread Library sets the
error code to the result of MemError, or to memFullErr if MemError returns the value
noErr.
Thread Library stores sufficient information with each block of memory it allocates to
enable it to dispose of the memory using the appropriate disposal function. Thus, memory
allocated by an application-defined allocation function is disposed of using the application-
defined disposal function while memory allocated by NewPtr is disposed of using
DisposePtr.

Application Defined Memory Allocation Functions
The application can install functions that are called when Thread Library needs to allocate
or deallocate a pointer to a block of memory. You can use your own memory allocation
functions to support better memory management in the context of your own application.
For instance, you could maintain a pool of memory blocks to provide fast creation and
destruction of threads. It is the responsibility of the application to ensure that the correct
memory disposal function is installed with the corresponding memory allocation function.
Functions for accessing the application-defined memory allocation functions of a thread are
described in the section “Access to Application Defined Memory Allocation Functions”.

Functional Interface to Allocation Functions
This section describes the functional interface to the application-defined memory allocation
functions.

Allocate
void *allocate(ThreadSizeType size, ThreadTypeType type);

Parameters
size number of bytes to allocate;
type type of memory to allocate.

Preconditions
0 ≤ size ≤ THREAD_SIZE_MAX.
type ∈ { THREAD_TYPE_UNSPECIFIED,

THREAD_TYPE_THREAD,
THREAD_TYPE_STACK }.

43

44
Postconditions

result ∈ { NULL, pointer to memory }.
result ≠ NULL ⇔

44

45
[TMemoryAvailable' ≤ TMemoryAvailable - size.
Memory pointed to by result is in the application's heap and is available for use by

Thread Library.]
Description

Called whenever Thread Library needs to allocate a block of memory. Must return a block of
memory compatible with the standard ANSI C library function malloc. Blocks allocated with
the allocate function should be contained within the current application's heap zone. It is not,
however, necessary that the blocks be allocated using NewPtr. The type parameter specifies
the type of memory being allocated. In the future, it may be necessary to place additional
constraints on certain types of memory blocks used by Thread Library; the type parameter
provides for such enhancement.

Dispose
void dispose(void *p, ThreadSizeType size, ThreadTypeType type);

Parameters
p pointer to block of memory previously allocated with a corresponding

allocation function;
size number of bytes to which p points;
type type of memory to which p points.

Preconditions
p∈ { NULL, pointer returned by a prior call to allocate }.
0 ≤ size ≤ THREAD_SIZE_MAX.
type ∈ { THREAD_TYPE_UNSPECIFIED,

THREAD_TYPE_THREAD,
THREAD_TYPE_STACK }.

Postconditions
p ≠ NULL ⇔ TMemoryAvailable' ≥ TMemoryAvailable + size.
p ≠ NULL ⇒ Memory pointed to by p is no longer available for use by Thread Library.

Description
Called whenever Thread Library needs to dispose of a block of memory that was allocated
with a corresponding allocation function. The size and type parameters have the same
values as the values passed to the corresponding memory allocation function. The dispose
function must behave in a manner compatible with the standard ANSI C library function
free.

Apple's Thread Manager

45

46
Thread Manager is an implementation of threads provided by Apple. Thread Manager is
now bundled as part of system 7.5, though previously it was distributed as a separate
extension. Thread Manager is an integral part of MacOS, and is supported by Apple. Since
it includes hooks for debuggers, some debuggers are now thread-aware and can help you
debug threaded applications. Thread Manager for M68K Macintoshes provides preemptive
threads, but the PowerPC version does not provide preemption. You can find more
documentation about Thread Manager in any Apple distribution of it (e.g., the SDK or ETO
CD-ROMs).

Note

Thread Library has no connection with Thread Manager or with ThreadsLib (a library
provided by Apple for use with Thread Manager). ◆
Threads are properly considered a low-level operating system service. The Thread Manager
is part of MacOS and is likely to be maintained and upgraded by Apple so as to be
compatible with future versions of the operating system and with future hardware
platforms. As such, Apple's Thread Manager provides the best supported method to
implement threads under MacOS.
Thread Library is not intended to compete with Thread Manager. I wrote Thread Library to
see how hard it would be to implement, to gain experience in low-level operating system
hacking, and to provide a free version of clean source code so that others could see how
threads might be implemented in MacOS.
If you intend to use Thread Library in your applications, I recommend that you wrap your
calls to Thread Library in a compatibility layer, such as that provided by the
ThreadLibraryManager library provided with Thread Library. This layer would allow you to
switch to Thread Manager should the need arise. For software that must run under system
6, or on systems where Thread Manager is not installed (as determined by the appropriate
Gestalt selector), your compatability layer could automatically switch to Thread Library
instead of Thread Manager. Even if you do not intend to use Thread Manager, you may still
need to place a layer between your application and Thread Library. For instance, I use a
layer of code—with nearly identical names and semantics to a subset of the code in Thread
Library—to allow my applications to save and restore exception and profiler stacks, and to
use my own custom memory allocator.

W A R N I N G

It is not possible to use both Thread Manager and Thread Library at the same time within a
single application. Using both Thread Manager and Thread Library in the same application
will result in undefined behavior. ◆
Today, Thread Library offers fewer advantages over Apple's Thread Manager than it might
once have had. While personally I may think that Thread Library's functional interface is
cleaner and more logically structured, that is not the most compelling reason for its use in
production software (if only because it is possible to place a wrapper around Thread
Manager to improve its interface). Thread Library is faster than Thread Manager, and runs
in native mode on the PowerPC. Also, Thread Library is compatible with System 6, which
may be important for some applications, though the share of the market of Macintoshes
using System 6 is shrinking. Finally, at the time I wrote Thread Library, Apple was not
bundling Thread Manager with the operating system, and required a higher licensing fee
($200 versus $50 today), so Thread Library provides an option for those writing freeware
and shareware applications, and who might therefore not have the resources to license
Thread Manager.

46

47
Known and Potential Problems

This section lists any known bugs, incompatibilities, or suspected problems that you might
encounter when using Thread Library.

47

48

Handling Events
Only the main thread may make calls to WaitNextEvent, GetNextEvent, and EventAvail.
Calling WaitNextEvent or GetNextEvent from within any other thread may cause the
application to crash. Calling EventAvail from within any other thread may result in odd
behavior, though not necessarily a crash. I find it useful to retrieve all events using a single
function which includes a simple assertion, such as "assert(ThreadActive() ==
ThreadMain())", to ensure that it is called only from within the main thread. All other
threads should call ThreadYield and allow the main thread to retrieve events. As mentioned
in the description of the scheduling algorithm, the main thread is scheduled whenever
there are any pending events, so pending events will be handled as soon as ThreadYield is
called.

Virtual Memory
It is possible that allocating a thread's stack in virtual memory may cause the operating
system to crash if it attempts to execute a task on the thread's stack while the stack is
swapped to disk. I am not sufficiently familiar with virtual memory to determine if this
would indeed be a problem. Further analysis and testing are required.

Thread Manager
It is not possible to use both Thread Manager and Thread Library at the same time within a
single application. Using both Thread Manager and Thread Library in the same application
will result in undefined behavior.

Toolbox
For all threads other than the main thread, some Macintosh Toolbox routines may not work
correctly if the stack is not between the region of memory defined by the low-memory
globals CurStackBase and ApplLimit. Possibly prohibited are some QuickDraw calls, but I
do not actually know which Toolbox routines will fail. Some simple tests I ran created a
dialog with a progress bar; created, opened, read and wrote files; created a resource file
and added resources to it; allocated memory; and did various other operations, all
successfully and without problems. Since the main thread uses the application's stack,
there are no restrictions on the Toolbox routines that the main thread may call. I am
interested in whether you encounter (or do not encounter) limitations to Toolbox calls, and
would like to know under what conditions the limitations arise.

SuperClock

48

49
SuperClock!, written by Steve Christensen, is a popular control panel that displays a clock
in the menu bar. A version derived from SuperClock! is now a standard part of system 7.5.
SuperClock! 4.0.4 will not update its numerals every second when EventAvail is called from
within a thread other than the main thread. SuperClock! will still update the timer
animation when you run the stopwatch, and will update the numerals less frequently. This
happens both in my Thread Library and in Apple's Thread Manager. You usually will not
notice this effect since threads usually do not call EventAvail. I am not sure if this is a bug
in threads or in SuperClock!. At any rate, this appears to be a minor cosmetic problem and
it should not interfere with the operation of an application that uses threads.

Future Operating Systems
Implementing threads requires, by necessity, some nonportable source code. For instance,
the register swapping code depends on the specific instruction set and architecture of the
computer and operating system. The main system-specific dependencies in Thread Library
are:
• the instructions used to save and restore the registers;
• the stack grows down from high-memory to low-memory;
• any block of memory allocated from within an application's heap may be used for a

thread's stack;
• several low-memory globals are accessed and modified by Thread Library; these low-

memory globals might not be available in future versions of MacOS.
There are doubtless additional nonportable assumptions that I have made in writing Thread
Library. The source code will have to be modifiedIf any of the assumptions that I relied
upon becomes invalid.

To Do
Macintosh ticks are coarse time units. It would be better to measure times in microseconds
rather than ticks. To avoid complicating the interface or slowing down the code with
runtime checks to determine if intervals should be measured in microseconds or in ticks, it
would probably be best to use a conditional compilation directive to control Thread
Library's behavior.
It is possible to add preemptive threads to Thread Library. Preemptive threads have a
limited utility, however, since they must be executed at interrupt time, precluding the use
of most of the Macintosh toolbox. Someday, if there is demand for preemptive threads, I
may add this feature. (I actually started trying to implement this, but it is tricky, so it may
take a while, by which time Apple's Thread Manager may provide preemptive threads on
both M68K and PowerPC Macintoshes.)
Some low-memory globals may not be available under A/UX (most notably, the Ticks low-
memory global). Adding a runtime check for A/UX to determine if the Ticks low-memory
global is available could slow down access to the variable, so it may be better to include a
conditional compilation option.

Credits
Some ideas on how to use setjmp/longjmp to swap stacks were adapted from the source for
Task Manager v2.2.1 by Michael Hecht <Michael_Hecht@mac.sas.com>, available at the

49

50
info-mac archives and various other sites.

50

51
Special thanks to Peter Lewis <peter.lewis@info.curtin.edu.au>, who did a detailed review
of Thread Library and made numerous suggestions to successive versions, including using
serial numbers to refer to all threads, using a sentinel value in the stack-sniffer VBL task,
and improving the scheduling of threads. Also, though it took me several months to decide
to add it, it was his suggestion to add the ability to enable and disable individual threads.
Thanks to Metrowerks for allowing me to distribute a modified version of "setjmp.s" as the
file "regppc.s".
Thanks also to all of the following people for helping me make Thread Library a better
product.
Anton Rang <rang@icicle.winternet.mpls.mn.us> responded to my query on
Comp.sys.mac.programmer on how to disable the stack sniffer VBL task. (Several other
people also responded, but Anton Rang's reply was the first to arrive.)
Daniel Sears <sears@netcom.com> reported some problems with Thread Library,
including a conflict with SuperClock!, and tried out updated versions I emailed to him.
Matthew Xavier Mora <mxmora@unix.sri.com> suggested the SetPort call in TestThreads
and helped debug an update problem in ThreadsTest.
Barry Kirsch <bkirsch@omni.voicenet.com> reported a problem with compiling Thread
Library using THINK C's "MacHeaders" precompiled header. He also noted that, when
using Thread Library 1.0d4, the Finder's About window would display incorrect information
about the memory utilization of the application; this prompted me to remove the call to
EventAvail and replace it with a different method to test for events which would not
produce this problem. He also prodded me into adding the functionality of ThreadEndAll.
Finally, thanks are due to anyone I may have forgotten to mention above, and who helped
me create or improve Thread Library.

Bibliography
Giering, Ted, and Mueller, Frank, et. al. “Pthreads”, 1993.

From the README file: “Pthreads is a prototype implementation of POSIX 1003.4a,
Draft 6. It is a C-language library that supports multiple threads of control within a
single process.” Pthreads is free. Though Pthreads was written for Unix systems, it may
be possible to port it to MacOS. I downloaded version 2.3 from the Internet, though I
have misplaced the ftp address. The authors provide the email address pthreads-
bugs@ada.cs.fsu.edu, to which inquiries may be directed.

Lewis, Ted G., and El-Rewini, Hesham, “Introduction to Parallel Computing”, Prentice Hall,
1992.
Introduces parallel processing and issues that arise when programming concurrent
software. Also provides information on basic locking mechanisms for software, such as
test-and-set and queue locks.

Meyer, Bertrand, “Object-Oriented Software Construction”, Prentice Hall, 1988.
A good introduction to object-oriented techniques, and especially to Meyer's excellent
object-oriented language Eiffel. The Eiffel programming language includes reasonably
good runtime facilities for testing predicates.

Potter, Ben, et. al. “An Introduction to Formal Specification and Z”, Prentice Hall, 1991.
Introduces formal specification. The notation I used for the predicates in the

preconditions and postconditions is based on information in this book.
51

